Universal Relaxation and Diffusion in Many-body Interacting Systems

I shall try to convince the audience that this is the most interesting and important discovery supported by basic physics and plenty of critical experiments in glass-forming, non-glass-forming, and even in crystalline materials. Documented in "*Relaxation and Diffusion in Complex Systems*" K. L. Ngai, Springer, New York 2011.

1. Theoretical Basis

- a) Interaction potential determines dynamics. The potential is usually anharmonic and phase space is chaotic. Consequences:
 - Relaxation and diffusion governed by classical chaos (i.e. nonlinear Hamiltonian dynamics
 - Emergence of fundamental laws of relaxation and diffusion
 - Universal and general applied to all materials with interactions, independent of the nature of the interaction, inter-molecular, interonic, inter-particle, or inter-chain, and applicable to glass-forming systems, non-glass-forming systems, and even in crystalline systems
 35 years of work collectively known as the Coupling Model
- b) Too good to be true!?
 - Takes 35 years of work in different research fields to test and confirm the fundamental laws
 - Learn the different disciplines
 - Collaborate with many researchers in different fields
- 2. Support from experiments and simulations in glass-forming systems
 - Glass-forming systems offer the richest collection of experimental data and computer simulations to test the Coupling Model
 - The Johari-Goldstein β -relaxation
 - Introduction of pressure in addition to temperature opens up the field
 - Thermodynamic factors including density and entropy do determine the dynamics, but separately, and certainly not totally.
 - Origin of the $T\rho^{\gamma}$ -scaling of the dynamics.
 - Pharmaceuticals
 - Simulations
 - Posson's ratio (Bulk metallic glasses)
- 3. Nanometer scale reduction in size
 - Polymer thin films
 - Nanoconfined glass-formers

- Nano-ionics
- 4. Supports from experiments on glassy and non-glassforming systems
 - Dynamics of ions in glassy, molten, and crystalline systems
 - Plastic crystals
 - Supercooled and glassy water
 - Carbohydrates
 - Hydrated and solvated proteins
 - Fuel cell materials
- 5. Polymer dynamics and viscoelasticity
 - Rheology of entangled polymer sytems
 - Explanation of the thermo-rheological complexity of amorphous polymers